Acta Crystallographica Section C Crystal Structure Communications

ISSN 0108-2701

CsTiP₂O₇

Fu Qiang Huang and James A. Ibers*

Department of Chemistry, Northwestern University, 2145 Sheridan Rd, Evanston, IL 60208-3113, USA Correspondence e-mail: ibers@chem.nwu.edu

Received 17 January 2000 Accepted 24 February 2000

From single-crystal X-ray data, cesium titanium pyrophosphate, $CsTiP_2O_7$, is found to crystallize in the $KAIP_2O_7$ structure type. It possesses a three-dimensional tunnel structure built by the corner-sharing of distorted TiO_6 octahedra and P_2O_7 pyrophosphate groups. The Cs^+ cations are in the tunnels.

Comment

The chemistry of alkali-metal titanium phosphate compounds, especially those possessing layered or tunnel structures, is of interest owing to the remarkable ionic conductivity and the potential value as solid electrolytes (Daidouh et al., 1997; Maximov et al., 1994) that some possess, and to the considerable success of KTiOPO₄ as an excellent optical medium (Fan et al., 1987; Zumsteg et al., 1976). In general, the AMP_2O_7 (A = alkali metal, M = trivalent metal) structures crystallize in two large families, *i.e.* the NaAlP₂O₇ (Gamondés et al., 1971) and KAlP₂O₇ (Ng & Calvo, 1973) structure types. The compounds AMP_2O_7 with A = Na and M = V, Mo (Wang *et al.*, 1989; Leclaire, Borel et al., 1988) are isostructural to NaAlP2O7, and those of AMP_2O_7 with A = K, Rb, Cs, and M = V, Mo (Benhamada et al., 1991; Leclaire et al., 1989; Riou et al., 1989; Lii & Haushalter, 1987; Chen et al., 1989; Wang & Lii, 1989) are isostructural to KAIP₂O₇. In the ATiP₂O₇ system, α -NaTiP₂O₇ (Leclaire, Benmoussa *et al.*, 1988) is isostructural to NaAlP₂O₇, but β -NaTiP₂O₇ (Leclaire, Benmoussa *et al.*, 1988) and $A \text{TiP}_2 \text{O}_7$ (A = K, Rb, Cs; Wang & Hwu, 1991) are isostructural to KAlP₂O₇, where in the latter series, only the structure of RbTiP2O7 has been determined from singlecrystal X-ray data. The structure of CsTiP₂O₇, reported here, is isostructural to KAlP₂O₇.

The structure of $CsTiP_2O_7$ consists of a three-dimensional framework of $[TiP_2O_7]^-$, as shown in Figs. 1 and 2. The rigid framework is built by corner-sharing distorted TiO_6 octahedra and P_2O_7 pyrophosphate groups which form the tunnels running along the *c* axis (Fig. 2). There is only one crystallographically unique Cs atom with four equivalent ones in the unit cell. The Cs⁺ cations in a tunnel run in a zigzag chain parallel to the *c* axis; the distance between two Cs⁺ cations is 4.2986 (3) Å. Each Cs⁺ cation is surrounded by an irregular polyhedron of ten O²⁻ anions, as is Rb⁺ in the isostructural

Figure 1

The unit cell of CsTiP_2O_7 viewed down [010] with 90% probability displacement ellipsoids.

RbTiP₂O₇. However, Na⁺ is coordinated to nine O²⁻ anions in α -NaTiP₂O₇ and eight in β -NaTiP₂O₇. The Cs–O distances ranging from 2.9840 (18) to 3.452 (2) Å are comparable to those in CsVP₂O₇ which range from 2.978 (5) to 3.301 (5) Å (Wang & Lii, 1989). Each TiO₆ octahedron shares its six corners with five P₂O₇ groups, whereas the TiO₆ octahedron in α -TiP₂O₇ is linked to six P₂O₇ groups. This difference results in two different structures for *A*TiP₂O₇. In CsTiP₂O₇, the Ti–O distances in the distorted TiO₆ octahedron range from 1.974 (2) to 2.091 (2) Å (Table 1), the Ti–O3 and Ti–O5 distances being shorter than the other four, and this distortion is typical for Ti³⁺. Each P₂O₇ group is built from one P1 and

Figure 2

The unit cell of $CsTiP_2O_7$ viewed down [001] with 80% probability displacement ellipsoids.

one P2 tetrahedron, and shares its six corners with five TiO_6 octahedra. The PO_4 tetrahedra are distorted, the P-Odistances range from 1.511 (2) to 1.615 (2) Å (Table 1), and the P-O4 distances are about 0.1 Å longer than the others. The Ti-O and P-O distances in this structure are comparable to those in RbTiP₂O₇ [1.970 (8)-2.0769 (8) and 1.493 (8)-1.611 (8) Å, respectively; Wang & Hwu, 1991].

Experimental

Crystals of CsTiP₂O₇ were obtained from an initial mixture of Ti (0.67 mmol, Alfa, 99.9%), Se (4.0 mmol, Aldrich, 99.5+%), P (0.5 mmol, Aldrich, 99.99+%), and Cs₂Se₃ (0.5 mmol), synthesized from a reaction of stoichiometric amounts of elemental Cs (Aldrich, 99.5+%) and Se (Aldrich, 99.5+%) in liquid ammonia. The mixture was loaded under Ar, sealed under 10^{-4} Torr (1 Torr = 133.322 Pa) in a fused-silica tube, heated in a furnace to 1123 K at 1 K min⁻¹, kept at 1123 K for 70 h, cooled at 0.05 K min⁻¹ to 573 K, and finally cooled to room temperature. The reaction mixture was washed with water and acetone. It contained some purple-blue crystals of CsTiP2O7. Analysis of these crystals with an energy dispersive X-ray diffractionequipped Hitachi S-4500 SEM showed the presence of Cs, Ti and P in the ratio of 1:1:2, and the presence of oxygen, which came from silica. The same compound can be obtained from the reaction of a mixture of Ti (0.67 mmol), S (2.0 mmol, Alfa, 99.8%), P₂S₅ (0.5 mmol, Aldrich, 99%), and Cs_2S_3 (0.5 mmol).

Crystal data

CsTiP₂O₇ $D_x = 3.699 \text{ Mg m}^{-3}$ $M_r = 354.75$ Mo $K\alpha$ radiation Monoclinic, $P2_1/c$ a = 7.7247 (6) Å b = 10.2237 (7) Åc = 8.3429(6) Å $\beta = 104.788 (1)^{\circ}$ V = 637.05 (8) Å³ Z = 4Data collection Bruker Smart 1000 CCD diffractometer (i) scans Absorption correction: numerical face indexed (SHELXTL/PC: Sheldrick, 1997) $T_{\min} = 0.198, T_{\max} = 0.520$ 4699 measured reflections

Refinement

Refinement on F^2	$(\Delta/\sigma)_{\rm max} = 0.00$
R(F) = 0.023	$\Delta \rho_{\rm max} = 1.15 \ {\rm e}$
$wR(F^2) = 0.068$	$\Delta \rho_{\min} = -1.14$
S = 1.417	Extinction corre
1279 reflections	PC
101 parameters	Extinction coef
$w = 1/[\sigma^2(F_o^2) + (0.0400F_o^2)^2]$	

Cell parameters from 4699 reflections $\theta = 2.73 - 27.01^{\circ}$ $\mu = 7.464 \text{ mm}^{-1}$ T = 153 (2) KPlate, purple-blue 0.232 \times 0.200 \times 0.090 mm 1279 independent reflections

$R_{\rm int} = 0.028$
$\theta_{\rm max} = 27.01^{\circ}$
$h = -9 \rightarrow 10$
$k = -12 \rightarrow 12$
$l = -10 \rightarrow 10$
Intensity decay: <2%

 ${\rm \AA}^{-3}$ $e \; \mathring{A}^{-3}$ ection: SHELXTL/ fficient: 0.0082 (7)

Data collection: SMART (Bruker, 1999); cell refinement: SMART; data reduction: SAINT-Plus (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXLTL/PC (Sheldrick, 1997); molecular graphics: SHELXTL/PC (Sheldrick, 1997); software used to prepare material for publication: SHELXTL/PC.

Table 1

Selected geometric parameters (Å).

Cs-O2 ⁱ	2.9840 (18)	Ti-O2	2.0499 (19)
Cs-O6 ⁱⁱ	2.9859 (19)	Ti-O6	2.058 (2)
Cs-O2 ⁱⁱⁱ	3.105 (2)	Ti-O7 ⁱⁱ	2.0810 (19)
Cs-O1 ^{iv}	3.1544 (18)	Ti-O1	2.091 (2)
Cs-O7 ⁱⁱ	3.1577 (18)	P1-O3 ^{vii}	1.503 (2)
Cs-O1 ⁱⁱⁱ	3.2186 (19)	P1-O1 ^{viii}	1.5155 (19)
Cs-O7 ^v	3.267 (2)	P1-O2	1.5201 (19)
Cs-O5 ^{vi}	3.2843 (18)	P1-O4	1.612 (2)
Cs-O4 ^{vi}	3.3105 (19)	P2-O7	1.511 (2)
Cs-O3 ⁱ	3.452 (2)	P2-O5	1.517 (2)
Ti-O3	1.974 (2)	P2-O6	1.517 (2)
Ti–O5 ^{vii}	1.994 (2)	P2-O4	1.615 (2)

Symmetry codes: (i) -x, 1-y, -z; (ii) $1-x, \frac{1}{2}+y, \frac{1}{2}-z$; (iii) $-x, \frac{1}{2}+y, \frac{1}{2}-z$; (iv)

Use was made of the scanning electron microscope facility supported by the US National Science Foundation through the Northwestern University Materials Research Center (grant DMR96-32472). This research was supported by the National Science Foundation through grant No. DMR97-09351. The authors thank Craig McLauchlan for his help.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: BR1285). Services for accessing these data are described at the back of the journal.

References

- Benhamada, L., Grandin, A., Borel, M. M., Leclaire, A. & Raveau, B. (1991). Acta Cryst. C47, 424-425.
- Bruker (1999). SMART (Version 5.054) and SAINT-Plus (Version 6.0). Bruker AXS Inc., Madison, Wisconsin, USA.
- Chen, J. J., Wang, C. C. & Lii, K. H. (1989). Acta Cryst. C45, 673-675.
- Daidouh, A., Veiga, M. L. & Pico, C. (1997). Solid State Ionics, 104, 285-294.
- Fan, T. Y., Huang, C. E., Hu, B. Q., Eckardt, R. C., Fan, Y. X., Byer, R. L. & Feigelson, R. S. (1987). Appl. Opt. 26, 2390-2394.
- Gamondés, J.-P., d'Yvoire, F. & Boullé, A. (1971). C. R. Acad. Sci. Paris, 272, 49-52.
- Leclaire, A., Benmoussa, A., Borel, M. M., Grandin, A. & Raveau, B. (1988). J. Solid State Chem. 77, 299-305.
- Leclaire, A., Borel, M. M., Grandin, A. & Raveau, B. (1988). J. Solid State Chem. 76, 131-135.
- Leclaire, A., Borel, M. M., Grandin, A. & Raveau, B. (1989). J. Solid State Chem. 78, 220-226.
- Lii, K.-H. & Haushalter, R. C. (1987). Acta Cryst. C43, 2036-2038.
- Maximov, B., Bolotina, N., Tamazyan, R. & Schulz, H. (1994). Z. Kristallogr. 209. 649-656.
- Ng, H. N. & Calvo, C. (1973). Can. J. Chem. 51, 2613-2620.
- Riou, D., Leclaire, A., Grandin, A. & Raveau, B. (1989). Acta Cryst. C45, 989-991.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1997). SHELXTL/PC. Version 5.101. Bruker AXS Inc., Madison, Wisconsin, USA.
- Wang, S. & Hwu, S.-J. (1991). J. Solid State Chem. 92, 219-226.
- Wang, Y. P. & Lii, K. H. (1989). Acta Cryst. C45, 1210-1211.
- Wang, Y. P., Lii, K. H. & Wang, S. L. (1989). Acta Cryst. C45, 1417-1418.
- Zumsteg, F. C., Bierlein, J. D. & Gier, T. E. (1976). J. Appl. Phys. 47, 4980-4985.